22 research outputs found

    Intelligent Drilling and Coring Technologies for Unmanned Interplanetary Exploration

    Get PDF
    The robotic technology, especially the intelligent robotics that can autonomously conduct numerous dangerous and uncertain tasks, has been widely applied to planetary explorations. Similar to terrestrial mining, before landing on planets or building planetary constructions, a drilling and coring activity should be first conducted to investigate the in-situ geological information. Given the technical advantages of unmanned robotics, utilizing an autonomous drill tool to acquire the planetary soil sample may be the most reliable and cost-effective solution. However, due to several unique challenges existed in unmanned drilling and coring activities, such as long-distance time delay, uncertain drilling formations, limited sensor resources, etc., it is indeed necessary to conduct researches to improve system’s adaptability to the complicated geological formations. Taking drill tool’s power consumption and soil’s coring morphology into account, this chapter proposed a drilling and coring characteristics online monitoring method to investigate suitable drilling parameters for different formations. Meanwhile, by applying pattern recognition techniques to classify different types of potential soil or rocks, a drillability classification model is built accurately to identify the current drilling formation. By combining suitable drilling parameters with the recognized drillability levels, a closed-loop drilling strategy is established finally, which can be applied to future interplanetary exploration

    A modular crawler-driven robot: Mechanical design and preliminary experiments

    No full text
    This paper presents a tracked robot composed of the proposed crawler mechanism, in which a planetary gear reducer is employed as the transmission device and provides two outputs in different forms with only one actuator. When the crawler moves in a rough environment, collision between mechanism and environment inevitably occurs. This under-actuated crawler can absorb the impact energy that should be transmitted to the actuator. A modular concept for the crawler is proposed for enlarging its use in robot systems and mechanical design of a modular crawler is conducted. Using this crawler module, a four-crawler-driven robot is realized by easily assembling. Experiments are conducted to verify the proposed concept and mechanical design. A single crawler module can well perform the proposed three locomotion modes. The four-crawler-driven robot has good adaptability to the environment which can get over obstacles both passively and actively

    Optimization and Analysis of a U-Shaped Linear Piezoelectric Ultrasonic Motor Using Longitudinal Transducers

    No full text
    A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 Vrms. The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 Vrms. The proposed motor showed great potential for linear driving of large thrust force and high power density

    Theoretical substantiation of low-frequency shock-contact impact as a way to increase the efficiency of ultrasonic drilling of extraterrestrial soil

    No full text
    A physical and mathematical model of ultrasonic destruction and deformation of solid soil has been developed, taking into account the presence of additional influences (low-frequency impact, rotational). The numerical implementation of the model is carried out in the form of a computer program for calculating the process of deformation and destruction of the soil. The presented results of calculations proved the possibility of additionally increasing the efficiency of ultrasonic drilling by more than 2.5 times due to the imposition of low-frequency shock-contact action

    A Quadruped Micro-Robot Based on Piezoelectric Driving

    No full text
    Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s

    Prediction of the temperature of a drill in drilling lunar rock simulant in a vacuum

    No full text
    In this article, the temperature of a sampling drill in drilling lunar rock simulant in a high-vacuum environment was studied. The thermal problem was viewed as a 1-D transient heat transfer problem in a semi-infinite object. The simplified drill was modeled using heat conduction differential equation and a fast numerical calculation method is proposed on this basis, with time and the drill discretized. The model was modified to consider the effects of radiation, drill bit configuration, and non-constant heat source. A thermal analysis was conducted using ANSYS Workbench to determine the value of the equivalent correction coefficient proposed in this paper. Using fiber Bragg grating temperature measurement method, drilling experiments were conducted in a vacuum, and the results were compared to the model. The agreement between model and experiment was very good

    Drilling load modeling and validation based on the filling rate of auger flute in planetary sampling

    Get PDF
    Some type of penetration into a subsurface is required in planetary sampling. Drilling and coring, due to its efficient penetrating and cuttings removal characteristics, has been widely applied in previous sampling missions. Given the complicated mechanical properties of a planetary regolith, suitable drilling parameters should be matched with different drilling formations properly. Otherwise, drilling faults caused by overloads could easily happen. Hence, it is necessary to establish a drilling load model, which is able to reveal the relationships among drilling loads, an auger’s structural parameters, soil’s mechanical properties, and relevant drilling parameters. A concept for the filling rate of auger flute (FRAF) is proposed to describe drilling conditions. If the FRAF index under one group of drilling parameters is less than 1, this means that the auger flute currently removes cuttings smoothly. Otherwise, the auger will be choked with compressed cuttings. In drilling operations, the drilling loads on the auger mainly come from the conveyance action, while the drilling loads on the drill bit primarily come from the cutting action. Experiments in one typical lunar regolith simulant indicate that the estimated drilling loads based on the FRAF coincide with the test results quite well. Based on this drilling load model, drilling parameters have been optimized

    Passive versus active control of weight-on-bit for an ultrasonic percussive drill

    No full text
    corecore